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Molecular dynamics simulations have been carried out in order to clarify the structural and hy-
drogen bond network differences among high density amorphous ice (HDA), low density amorphous
ice (LDA), and hexagonal ice (ice Ip). Ice I is transformed to HDA at 1.27 GPa and 77 K. A very
long time (order of a nanosecond) to complete the transition is required. It is found that molecular
motions are delocalized in the early stage and become localized in the final stage of the relaxation.
LDA is obtained by heating HDA to 160 K. The second peak of the radial distribution function is
more clearly separated from the first peak in LDA than in HDA. Few bifurcated hydrogen bonds
are found in LDA compared with HDA, which is evidence that LDA resembles crystal ice in short
range order. The network topology of the system is also analyzed in terms of the distribution of
Voronoi polyhedra, where the density lies between stable HDA and LDA. Density fluctuations are
found, which should be attributed to the precursor of a phase separation between HDA and LDA.

PACS number(s): 64.70.Kb, 64.60.—i

I. INTRODUCTION

Water is one of the most ubiquitous substances on
Earth and exhibits various anomalous properties such as
the density maximum temperature [1]. Its solid phase
has a rich variety of polymorphs [2]. It is also believed
that at least two metastable phases of amorphous ices
exist [3]; they are referred to as low density amorphous
ice (LDA) and high density amorphous ice (HDA). The
phase diagram for these amorphous ices including the su-
percooled liquid state is still controversial.

Speedy and Angell [4] accounted for the divergence
of thermodynamic properties in a supercooled state in
conjunction with the liquid-vapor spinodal. The liquid
spinodal line is the limit of mechanical stability of the
liquid state with respect to fluctuations toward a ther-
modynamically stable phase. The liquid spinodal line
begins at the liquid-gas critical point. In the plane of
pressure P and the temperature T, this line decreases
monotonically with decreasing T' along a path lying be-
low the liquid-gas coexistence curve. Speedy and Angell
[4] conjectured that the liquid spinodal line of water in
the pressure-temperature plane does not decrease mono-
tonically with decreasing temperature. Speedy [5] pro-
posed the stability-limit conjecture; the liquid spinodal
line has a minimum at negative pressure and passes back
to positive pressure as the temperature decreases further.
The increasingly anomalous thermodynamic behavior of
liquid water in the low temperature region can be inter-
preted via such a reentrant spinodal line.

The conjectured minimum in the liquid spinodal line
has not been directly observed due to the experimental
difficulties. Poole et al. [6] carried out molecular dynam-
ics simulations over a wide range of stable, metastable,
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and unstable liquid-state points, and demonstrated that
the liquid spinodal line does not reenter into the posi-
tive P region. Rather, the anomalies are related to the
critical point from which the LDA-HDA phase boundary
appears.

In order to model the phase behavior of liquid water,
Poole et al. [7] developed a van der Waals type equa-
tion. In their model, the free energy is separated into
two parts, the van der Waals free energy and the free
energy due to hydrogen bonds, both of which are func-
tions of the volume and have minima at fairly different
molar volumes. This model with appropriate parame-
ters predicts, though qualitatively, anomalous thermo-
dynamic properties of water, such as density maximum
temperature, the divergence in the compressibility, and
the heat capacity. At sufficiently low temperature, the
free energy in this model has two minima. They associ-
ated the LDA—HDA transition with the transition from
a free energy local minimum to another in the density co-
ordinate axis. However, this model also yields a different
phase diagram by a slight change of the parameters.

LDA can be prepared not by normal cooling but by the
following methods: (1) deposit vapor onto a cold plate
or hyperquench liquid state [8], (2) project a thin jet of
liquid water at high speed into liquid nitrogen (Mayer
et al. [9]), (3) ultraviolet irradiation on cubic ice (ice I;)
under 70 K (Kouchi et al. [10]). Mishima et al. invented
the other way to make amorphous water [3]. They com-
pressed hexagonal ice (ice Ij) at 77 K to its extrapolated
melting point of 1 GPa. Since the fluid is well below
the glass transition at the melting point, it remains in
an amorphous state after the pressure is recovered to
0 Pa. They call this phase high density amorphous ice
(HDA). The density of HDA is ~1.17 g/cm3. On heating
at zero pressure, HDA transforms at ~117 K to another
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amorphous phase with evolution of heat and the density
becomes ~0.95 g/cm® [11], which is called low density
amorphous ice (LDA). Ice VIII also transforms to LDA
analogous to the transition from ice I to HDA in the
sense that these transitions occur at the extrapolated
melting points, when the pressure is removed at about
130 K ( Klug et al. [12]).

At ~145 K, LDA transforms to ice I. with heat evolu-
tion. At 77 K and ~0.6 GPa LDA is compressed to HDA
[13]. The pressure-induced reversible LDA +>HDA transi-
tion at about 130-150 K was also reported [14]. Such an
apparent first-order phase transition of one amorphous
phase of materials other than water to another with a
large increase in density has not been reported to the best
of our knowledge, although gradual densification of amor-
phous phases up to 20%, when squeezed to ~10 GPa, has
been reported [15].

Whalley and Floriano discussed the entropy change
and transition pressure of pressure induced transforma-
tion from ice I, to HDA [16,17]. According to their
discussion, the equilibrium pressure between ice I and
HDA must be about 0.5 GPa, which is about half of the
actual transformation pressure. Thus the transformation
is limited by the kinetics, not by the thermodynamics,
because the transformation occurs at low temperature.

Many kinds of measurements have been reported on
pressure-induced amorphous ices. Klug et al. esti-
mated the distributions of hydrogen-bonded O—H---O
and O—D- --O distances using an experimental curve of
the O—H stretching frequency as a function of the 0—O
distance [18]. The most probable bond length in HDA is
2.83 A and the distribution of bond lengths has a half-
width of 0.19 A. In LDA, the most probable distance
decreases to 2.76 A and the half-width also decreases to
0.09 A. The most probable O---O distance in ice Iy is
2.75 A. Bosio et al. performed x-ray diffraction measure-
ments of two amorphous ices at atmospheric pressure.
They observed that the main differences between HDA
and LDA appeared at the second and third neighbors.
This corresponds to a distortion of the O—O—O angles
out of the ideal tetrahedral value of 109° [19].

Molecular dynamics (MD) simulations of two forms of
amorphous solid water have been executed by some au-
thors [20-22]. They showed that the simulation results
could reproduce experimental data. Poole et al. pro-
posed a phase diagram describing amorphous solid water
consistent with the available experimental data [6].

In the present work, we investigate the structural dif-
ference between HDA, LDA, and liquid water by perform-
ing long time MD simulations. The density fluctuation
near the transition point between HDA and LDA is also
analyzed. Section II describes the parameters and meth-
ods used in MD simulations and analyses. In Sec. III,
the results are presented. The conclusions are given in
Sec. IV.

II. SIMULATION PROTOCOL

We first prepare an ice I configuration which con-
sists of 360 water molecules in a rectangular box. Hydro-
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gen atoms are placed according to Bernal-Flower rules
[23]. In order to have an MD cell which has zero dipole
moment, the positions of protons are permutated until
the total dipole has a vanishing value. In the present
simulation, pairwise additivity of all the interactions is
postulated. The water-water intermolecular interaction
is described by a transferable intermolecular potential
with three charge points (TIP4P) [24]. This potential
has often been used in the study of water. It is believed
to be one of the most reliable potentials. The interac-
tion potentials for all pairs of molecules are truncated
smoothly at 8.655 A. The damping is used for conve-
nience of later analyses. MD simulations are performed
in the framework of constant pressure-constant temper-
ature (N, P,T) ensemble. A time step for integration of
equations of motion is 0.5 fs. Temperature and pressure
are controlled by the Nosé-Andersen method [25,26].

A. Structure analysis

The potential energy surface for a system with many
particles has a huge number of potential wells which are
proportional to the exponential of N, number of par-
ticles in the system. A minimum-energy configuration
corresponding to the potential energy well is called an
“inherent structure” [27]. In order to analyze dynamics
of water, an instantaneous MD configuration (I struc-
ture) is often used. I structure can be separated into
two elements, a fundamental structure (inherent struc-
ture) and an intermolecular vibrational displacement (li-
bration and fast translation) from the inherent structure.
Since vibrational displacements are removed in inherent
structures, the hydrogen bond network pattern of liquid
water is more clearly defined than in I structures [1].

We invoke two ways to extract a fundamental struc-
ture. The first way is to quench the I structure. Quench-
ing of the system is a mapping of instantaneous configura-
tions onto the local minimum of the potential energy sur-
face. Quenching is performed using the steepest descent
method. We call the inherent structure thus obtained the
Q@ structure. The second way is coarse graining. Coarse
graining is performed according to

AT/2
7i(t) = /—A /zg(t')r,-(t +t')dt', (1)
g(t) = oSRCTE/AT). (2)

2nt! [ AT

where 7;(t) is the coordinate (both translational and ori-
entational) of the ith molecule at time ¢t and #;(¢) is the
averaged coordinate over A7 (=400 ns) [28]. The coarse-
graining operation can also remove the fast intermolec-
ular vibrations. The structure is called the V' structure
(vibrationally averaged structure) [29].

We define two water molecules as a neighboring pair
when the O—O distance is less than 3.5 A. When the
pair interaction energy is lower than —12.0 kJ/mol, it is
regarded as a hydrogen bonded pair. A proton, which
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is the closest to a hydrogen-bonded oxygen atom part-
ner, is considered to take part in the hydrogen bond. If
an proton has two neighbor pairs whose interaction ener-
gies are lower than —6.0 kJ/mol, the proton is considered
to belong to a bifurcated hydrogen bond (BBy). If an
oxygen atom belongs to more than two pairs whose in-
teraction energy is lower than —6.0 kJ/mol, the oxygen
also belongs to another kind of bifurcated hydrogen bond
(BBo).

B. Normal mode analysis

As the simulation temperature is well below the melt-
ing point, the system is considered to be solidlike. The
probability of transitions per unit time from a poten-
tial well to another becomes much lower in amorphous
solid than in liquid water. Then normal mode analysis
is of some utility. Normal mode analysis is performed
by diagonalizing the mass weighted force constant ma-
trix, m~/2Vm~1/2 where V is the second derivative
of the intermolecular interaction and m stands for the
mass tensor. In this analysis, the potential energy is ex-
panded as a power series of the particle displacements
and is truncated at the quadratic order. The density of
state for intermolecular vibrational motions p(w) can be
obtained from an appropriate average over the generated
structures. In the case of water, density of state can be
roughly divided into three regions. The region above 500
cm™! corresponds almost exclusively to rotational mo-
tions of individual molecules. The region between 0 and
400 cm ™! corresponds to translational motions [30]. The
last region consists of modes which have imaginary fre-
quencies (negative eigenvalues). These modes are unsta-
ble modes. For presentational. convenience, we plot the
imaginary (unstable) frequency modes along the negative
frequency region.

C. Voronoi polyhedra analysis

Radial distribution functions (RDF') provide only one-
dimensional structural information. Voronoi polyhedron
(VP) gives alternative information on coordination struc-
ture. If the nearest particle of an arbitrary point in the
simulation cell is the ith molecule, this point is considered
to be in the VP of the ith particle. In order to character-
ize the shape of VPs, Ruocco introduced a dimensionless
parameter, which is called “asphericity” [31],
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where S and V is the face area and the volume of a VP.
By definition, 7 is 1 for a sphere, whereas it equals 1.33,
1.35, and 1.91 for a truncated octahedron, a rhombic do-
decahedron, and a cube, respectively. They correspond
to the Wigner-Seitz cells of bec, fce, and simple cubic (sc)
lattices. The asphericity for ice I is 2.25, which is due
to the tetrahedral arrangement of the first neighbors. In
the case of perfect tetrahedron, 7 is 3.31.
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III. RESULTS AND DISCUSSION
A. From ice I, to HDA

The simulation process is shown in Fig. 1. The pres-
sure is increased at the rate of 4 MPa/ps up to 1.0 GPa.
The rate of the pressure increase is 2 MPa/ps between
1.0 GPa and 1.27 GPa. It is found that when ice I is
compressed to the pressure of 1.27 GPa at 77 K, a new
phase of density 1.37 g/cm® (between ice I, and state
point A in Fig. 1) is formed. Figure 2 shows the time
evolution of potential energies (for the I structure and
Q structure) and density between A and C. This tran-
sition happens suddenly as is shown in Fig. 2: a sudden
increase in the potential energy at about time t = 200
ps. The transition is accompanied by a 1.75 kJ/mol in-
crease in potential energy and by a 0.24 g/cm3 increase
in density. This simulation is continued for 3100 ps af-
ter the pressure is set to 1.27 GPa and we arrive at the
state point C'. The data for A (C) are given by averaging
over 10 configurations between 600 and 650 ps (3000 ps
and 3100 ps) after the pressure is set to 1.27 GPa. Some
small and stepwise decreases are seen in the potential
energy of the I structure. On the other hand, the den-
sity increases abruptly only once at 1200 ps. From A to
C, the potential energies of the I structure and Q struc-
ture decrease by 0.5 kJ/mol and 0.6 kJ/mol, respectively.
The pressure-induced structural change is so slow that 3
ns is required to complete the relaxation. The potential
energy of each state point is given in Table I.

Rings made by hydrogen bonded water molecules are
enumerated in order to examine a relation between the
density and the hydrogen bond network pattern. Table
I lists the averaged numbers of rings which consist of 3
to 10 hydrogen bonded water molecules in various condi-
tions (A ~ H). Ice I, consists of 720 6-membered rings
only. On the other hand, amorphous ices have a variety of

icel, (0.00GPa,77K,0.97g/cm?)

4

A (1.27GPa,77K,1.37g/cm®) = B (0.00GPa,77K,1.19g/cm?)

b (3ns)

C (1.27GPa,77K,1.37g/cm®) = D (0.00GPa,77K,1.22g/cm?)

4

E (-0.2GPa77K,1.17g/cm®) = F ( 0.2GPa,160K,1.17g/cm®)
4 4

G (—0.2GPa,160K,0.98g/cm?) I ( 0.1GPa 160K,1.08g/cm?)

H (—0.02GPa,300K,1.00g/cm?)

FIG. 1. Simulation process. Bold type means a control
parameter. System H, which is liquid water at room temper-
ature, is simulated separately.
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FIG. 2. Potential energies at 77 K and 1.27 GPa in I (thick
dashed line) and Q structures (thin dotted line) and density
(solid line) of amorphous ice along the trajectory. The curves
are coarse grained.

rings. After long time relaxation (3000 ps), the numbers
of 3- to 6-membered rings decrease and those of 7 and
8 rings increase. Especially, the number of 6-membered
rings decreases drastically. It means that the topological
connectivity of ice Ij, still remains at A and the rotational
relaxation occurring between A and C changes the con-
nectivity of hydrogen bond network. The ring distribu-
tions for B (D) are given by averaging 10 configurations
between 90 and 100 ps after the pressure is recovered to
0.0 GPa from A (C). The numbers of 5- and 6-membered
rings in A (B) are larger than that in C (D). It shows
that the effect of long time relaxation between A and C
does not vanish by removing the pressure to 0.0 GPa. In
ice VII, 6-membered rings penetrate each other. In the
case of A and C, however, either penetration of ring or

TABLE 1. Potential energy and ring size distributions.
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FIG. 3. Time evolution of displaced moment ratio between
A and C. Only translational displacements are included. See
text.

crossing of hydrogen bonds is not observed. Instead, a
high density phase is made by bending hydrogen bonds
not by crossing the rings of hydrogen bonds.

The relaxation process in the @ structure is composed
only of transitions between adjacent Q structures in con-
figuration space. Individual transitions are expected to
be collective in nature as in liquid water [32]. The cooper-
ativity can be quantified by evaluating the displacement
moment ratio

__(/N)SY AR}
(/M) s, arz]”

(4)

where AR; is the molecular displacement of the ith water
molecule between two minima, which are separated by 25
ps. Let us consider the case when AR takes only 1 or 0.
If AR of m particles are 1 and the others are 0, &4 is

€y = m/N _N

(m/N)2 m’ (5)

Conditions for the systems A-H are

given in Fig. 1. PE is the potential energy of the I structure in kJ/mol.

Ring Size

System PE 3 5 6 7 8 9 10
ice I 0.0 0.0 0.0 720.0 0.0 0.0 0.0 0.0
A 1.27 GPa, 77 K —51.0 4.2 454 108.7 160.8 49.5 1.9 0.0 0.0
B 0.0 GPa, 77 K —52.1 2.8 38.0 132.6 159.8 40.5 2.1 0.0 0.0
C 1.27 GPa, 77 K —-51.5 2.5 34.8 96.9 119.2 55.6 3.0 0.0 0.0
D 0.0 GPa, 77 K —52.2 0.0 325 119.8 136.5 54.3 49 6.0 0.2
E -0.2 GPa, 77 K —52.3 0.2 31.0 140.5 156.5 42.3 1.7 0.0 0.0
F 160 K, 1.17 g/cmf1 —50.3 0.2 28.5 129.4 164.5 43.0 1.0 0.0 0.0
G -0.2 GPa, 160 K —50.2 0.0 26.6 148.5 200.9 32.2 0.1 0.0 0.0
H 300 K, 1.00 g/cm® —50.8 2.1 30.7 79.4 95.0 44.9 7.0 0.5 0.0
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This means that the ratio {4 is large (small) if the molec-
ular displacements are localized (delocalized). When the
distribution of AR is Gaussian, &4 is 5/3. The time de-
pendence of the displacement moment ratio is shown in
Fig. 3. Clearly seen is the difference in the magnitude
of the moment ratio between transitions before and af-
ter the abrupt change of the density at about t=1200 ps.
The moment ratio is small in the early stage of the re-
laxation. The number of water molecules involved in a
single transition is approximately 20. After t=1200 ps,
some large moment ratios are observed, which means lo-
calized displacements occur frequently. The latter half of
the relaxation is comprised of a large number of localized
motions accompanied by a small number of highly coop-
erative transitions. Most of the transitions are restricted
to those motions involving few water molecules.

B. From HDA to LDA

An NPT simulation is performed for 800 ps at negative
pressure —0.2 GPa and 77 K, which corresponds to those
between state points C and E. After that, we perform
an NV E simulation for 100 ps in order to compare the
measurable quantities. The data for E are given by av-
eraging 1000 configurations during the NV E simulation.
After the system E is heated up to 160 K, an NVT sim-
ulation is performed for 650 ps and an NV F simulation
is continued for 500 ps. The data for G are given from
1000 configurations in the last 100 ps of the NV F simula-
tion. We consider F (G) as the representative structures
as HDA (LDA). We also obtain the systems F' and H.
H is given by averaging 1000 configurations in 100 ps
NVE simulation at 300 K and 1.00 g/cm®. F is given
by heating system E (HDA) to 160 K without changing
density. It takes 280 ps of NV T simulation and 425 ps
of NV E simulation to reach equilibrium. The data for
F are given by the average of 1000 configurations in the

12 T T T T T T . :

°r E( 77K,1.17g/em}) — |
G(160K,0.98g/cm) -----
H(300K,1.00g/cm®) -----

8 i —~

Distance(A)

FIG. 4. Radial distribution functions (O—O) for the V
structure of water in systems E (HDA, solid line), G (LDA,
dashed line), and H (liquid water, dotted line).
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FIG. 5. The number of hydrogen bonds per molecule in V'
structure in systems E (HDA, solid line), G (LDA, dashed
line), and H (liquid water, dotted line).
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FIG. 6. Distributions of binding energy in systems E
(HDA, solid line), G (LDA, dashed line), and H (liquid wa-
ter, dotted line). These distributions are only for pairs whose
distances are less than 3.5 A. (a) is for the Coulomb term and
(b) is for the LJ term.
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FIG. 7. Radial distribution functions for the bifurcated
bonds. (a) Distribution for BBy. Solid line is for the strongest
bond in a pair of bifurcated bonds. Dashed line is for the sec-
ond or third strongest bond. (b) Distribution for BBo. Solid
line is for the first and second strongest bond in a pair of bifur-
cated bonds. Dashed line is for the third or fourth strongest
bond. The meaning of BBy and BBo is shown in the text.

2643

last 100 ps NV E simulation.

Ice I is experimentally the most stable phase at the
condition of F' In the simulation, however, transforma-
tion to ice I cannot be observed because it takes a much
longer time than the time scale of ordinary simulation for
a nucleus to extend the entire simulation cell. Therefore,
the system remains a metastable state.

The structure of LDA resembles that of ice I}, in short
range order more than HDA. The first piece of evidence
for this is the RDF. Figure 4 shows RDF for the V struc-
ture of HDA, LDA, and liquid water at 300 K. The peak
positions do not differ from each other. On the other
hand, there is a large difference in the height of the sec-
ond peak. The second peak for LDA is clearly separated
from the first one by a deep well. On the contrary, the
second peak for HDA is split and separation from the
first peak is not so distinct as that of LDA. In the case of
liquid water, the first minimum is very shallow. The dis-
tribution of the number of hydrogen bonds per molecule
in the V structure is shown in Fig. 5. More than 80%
of the molecules have four hydrogen bonds in HDA and
LDA. On the other hand, the number of molecules with
four hydrogen bonds in liquid water is less than 60%.
The number of four intact hydrogen bonds is the greatest
in LDA. The binding energy distribution also supports
the above view. Figures 6(a) and 6(b) show the binding
energy distribution functions of the Coulomb part and
Lennard-Jones (LJ) part for £ (HDA), G (LDA), and H
(liquid water). The peak of the distribution of the LJ
part of the binding energy in LDA is higher than that in
liquid water at 300 K. The number of molecules whose
Coulomb energy |F,| is smaller than 48 kJ/mol decreases
more in LDA than in HDA and in liquid water. In the
region of |E¢| > 48 kJ/mol, however, the reverse holds.
This results from the fact that orientations are dominated
by the strong Coulombic interaction. Since the Coulom-
bic interaction is so strong, the LJ part of the interaction,

&0 ' ! T T T T
P E(1.17g/cm§, 77K) —
A F(1.17g/cm_,160K) -~
50 - G(0.98g/cm’,160K) ----- |
40 -
=
€ 30f
=
20
10
o B
-200 -100 0 100 200 300 400

Wave Number(cm™)

FIG. 8. Density of state for intermolecular vibrational mo-
tions for water in systems E (HDA, solid line), F (dash-dot
line), and G (LDA, dashed line).
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which is not compatible with the Coulombic interaction,
becomes repulsive. This is the second piece of evidence
for structural similarity of LDA to ice Ij in short range
order.

The third piece of evidence is obtained from the anal-
ysis of the bifurcated hydrogen bond and the ring struc-
ture. The RDF of two kinds of bifurcated bonds is pre-
sented in Fig. 7. The number of BB is larger than that
of BBy. This is partly due to the functional form of
the intermolecular interaction: Since only a single site
with negative charge exists on Cj, bisector in TIP4P
potential, the potential energy around an oxygen atom
does not change so harshly as that around a hydrogen
atom. The number of the bifurcated bonds is the largest
in HDA whereas that in LDA is much less than in HDA
and liquid state. Figure 7 shows that most of the bifur-
cated bonds are originated from an oxygen atom in both
the first and the second coordination shell. In liquid wa-
ter and HDA, we observe BBo, which consists of two
molecules in the first coordination shell. Only liquid wa-
ter has BBy, which consists of two molecules in the first
coordination shell. On the other hand, there are few bi-
furcated bonds in LDA. According to the distribution of
ring size, the concentrations of 5- and 6-membered rings
in LDA and HDA are much more populated than those
in liquid water, whereas the concentration of 7-membered
rings is much less than that in liquid water. This is en-
hanced especially in LDA, where the number of linear
hydrogen bonds is larger than that in water and in HDA.

In order to see how the vibrational modes are delo-
calized in space, the moment ratio of each eigenvector is
calculated, which is defined as

N%Zie?

3 (6)
(Nif 2 ef)

e =

140 T T T T
E(1.17g/cm’, 77K) —
L F(1.17g/cm?,160K) -~
120 | G(0.98g/cm®,160K) ---- ]
100 +
o
& 8o F
€
] L
§ 60~
b=
40 +
20 +
]
-100 -80 -60 -40 20 0

Wave Number (cm™')

FIG. 9. Moment ratio £. of the unstable modes in systems
E (HDA, solid line), F (dash-dot line), and G (LDA, dashed
line).
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Here e is the corresponding individual molecular dis-
placements of an eigenvector, and the average is taken
over all molecules. £, has the same property as ;. In
liquid water, there are a number of modes between 400
and 500 cm™! (see Fig. 8). These modes are localized
and their eigenvectors contain both translational and ro-
tational elements [1]. Figure 9 shows the frequency de-
pendence of €. in the unstable (imaginary) frequency re-
gion. Increasing the temperature has two effects. One is
to increase the number of unstable modes. Another is to
decrease the mean moment ratio in the unstable region,
which means that the number of delocalized modes in-
creases. On the other hand, decreasing density does not
change the number of unstable modes. The peak of p(w)
in LDA is more pronounced than in HDA and the local-
ization of unstable modes is enhanced, especially below
-30 cm ™!,

C. Density fluctuation in HDA and LDA

For the sake of examining density fluctuations in amor-
phous solids, an MD simulation is performed at 160 K
and 1.08 g/cm?® (system I) with a fixed volume. The den-
sity of the system lies between HDA and LDA. Since the
system is probably unstable, we may observe the phase
separation into the high density region and low density
region.

In Fig. 10, the distributions of the volume of VPs for
E (HDA), F, G, (LDA), H, and I are presented. Note
that an oxygen atom has been considered as a center
of the whole molecule. The distributions are broader in
the lower density system (0.98 g/cm?, 1.08 g/cm3) than
in higher density system (1.17 g/cm®). No appreciable
changes are found at different temperatures for higher
density systems [E (HDA) and F]. The wide distribu-
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FIG. 10. Volume distributions of Voronoi polyhedra in sys-
tems E (dashed line), F' (solid line), G (dotted line), H (thick
dotted line), and I3 (dash-dot line).
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tion indicates that there are more distinctive states of
individual water molecules in LDA than in HDA.

In order to see the spatial luctuation of the amorphous
ices, we calculate the static structure factor of molecules
whose volumes of VPs are less than the average value.
The structure factor is given by

NLL (Z cosk - 'ri) + (Z sink - 'r,-) , (7)

[

where 7; is the position vector of the ith oxygen atom,
and k is a wave vector. Note that the sum is taken over
the molecules whose volumes of VPs are less than the av-
erage. Ny can be the number of those molecules, which
belong to HDA phase. The structure factor thus defined
is denoted by S, (k). If these selected molecules aggre-
gate, the domain size becomes comparable to the system
size and one can observe a peak in the small k region.
This peak is a symptom of a phase separation. In Fig. 11,
S»(k) for E (HDA), F, G (LDA), H, and I are shown.
Large peaks appear in £ (HDA), F, and I. The most
important fact is that we can see peaks in the small wave
number region even for £ (HDA) and F. This is not ob-
served when temperature goes up to 300 K at 1.0 g/cm?,
which ensures that the peak observed in E and F' is not
due to the thermal fluctuation but due to the precursor
of phase separation. Comparing the position of the peak
in low density region of S,(k), phase separation seems
to cease in E. System E does not have enough kinetic
energy to complete phase separation.

7 T T T T T T
13(1.08g/cm, 160K) - -
F (1.17g/cm 160K) ——
E (1.17g/cm/, 77K) ----

6 L G (0.98g/cm?, 160K) -
H (1.00g/cm®,300K) -----

4
‘2\
2
2
£
3
2
1
0 L || 1 L 1
0 0.5 1 15 2 25 3 3.5
Wave Number(A™)
FIG. 11. Static structure factors S,(k) of the particles

whose volume is smaller than average in systems E (dashed
line), F (solid line), G (dotted line), H (thick dotted line),
and I3 (dash-dot line).
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FIG. 12. Asphericity distributions of Voronoi polyhedra in
systems E (dashed line), F (solid line), G (dotted line), H
(thick dotted line), and Is (dash-dot line).

From the view point of the asphericity of VPs, we can
see another picture of the structural fluctuation of amor-
phous ices. Figure 12 shows the asphericity distributions
of VPs. In G or I, the distribution does not have a sharp
peak but seems to be separated into two contributions.
Another structure factor S,(k) is also calculated: the
structure factor of the molecules whose asphericity is less
than the average, which is shown in Fig. 13. In the case
of E (LDA), the peak in the small wave number of S, (k)

7 T T . : . :
13(1.08g/cm?, 160K) ---
i F (1.17g/cm®160K) ——
ii E (1.17glcm, 77K) ----
6 il G(O.QBg/cm3,1soK) I
o i H (1.00g/cm’,300K) - -
5
4

Intensity

0 0.5 1 1.5 2 2.5 3 3.5
Wave Number(A™)

FIG. 13. Static structure factors Sa(k) of the particles
whose asphericity is smaller than average in systems E
(dashed line), F (solid line), G (dotted line), H (thick dotted
line), and I3 (dash-dot line).
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FIG. 14. Snapshot of the configuration at 1.08 g/cm® and
160 K. Water molecules are represented by spheres. Volumes
of Voronoi polyhedra of shaded spheres are smaller than the
average.

is higher than that of S,(k) as shown in Fig. 11. This
indicates that the molecules, whose shapes are similar,
tend to aggregate in LDA. This is not the case for HDA.
In the case of I, both S, (k) and S,(k) have large peaks
in the small wave number region (see Fig. 11). We can
also observe the separation from the snapshot of system
I (t=800 ps) shown in Fig. 14. This topological fluc-
tuation may be associated with the spatial fluctuation
proposed by Speedy [33,34].
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IV. CONCLUDING REMARKS

Ice I, transforms to high density amorphous phase
(HDA) at 1.27 GPa and 77 K. However, since the low
temperature does not allow a complete rearrangement of
the local molecular configurations during compression, a
simulation must be continued for about 3 ns after the
transition in order to relax the system. The potential
energy of the I structure of the system decreased by 0.5
kJ/mol during the slow relaxation. The numbers of 4-,
5-, and 6-membered rings decrease and those of 3-,
7-, and 8-membered rings increase during the relaxation.
In the region after t=1200 ps the relaxation motions are
more localized.

LDA is obtained by heating HDA to 160 K. The second
peak of the RDF is more clearly separated from the first
peak in LDA than in HDA. Few bifurcated bonds are
found in LDA. These results mean that LDA resembles
crystal ice more than HDA in short range order.

The network topology of the system is analyzed in
terms of some distributions of VPs, where the density
lies between stable HDA and LDA (1.08 g/cm®). The
static structure factor of the particles whose volume of
VP is more than average is evaluated. It has a peak at
small wave number, which suggests the phase separation
into LDA and HDA begins to occur.
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